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ABSTRA(CT

A method of general perturbations utilizing Chebyshev series is used
to investigate motion in the vicinity of the L,4triangular point of the earth-
moon system. The model used is that of the very restricted four .;body
problem for the earth-moon-sun system. A harmonic orbit, in the numer-
ical sense, with respect to a rotating coordinate frame centered at L, is
found. The period of this harmonic orbit, being equal to the period of the
disturbing force, is the same as the moon's synodic period. Tﬁis orbit
remains within 6860km of the L4 point. I describes two different size
loops about Lg4, the smaller one traversed in 36 percent of the period. The
disturbing force, being nearly periodic with half the moon's synodic period,
gives rise to another orbit about L4 which is nearly periodic with half the
synodic pe_riqd of the moon. This orbit remains within 4574 km of the L4
point for twelve periods investigated. Deviations from the mid orbit dur-

ing this time is less than 381km.
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A HARMONIC L4 ORBIT
FOR

THE VERY RESTRICTED FOUR-BODY PROBLEM .

1. INTRODUCTION .

In some recent literature interest has been shown in the problem c;f the iﬁ-
fluence of the sun on motion close to the libratibn points of the earth-moon sys-
fem as well as motion about the earth and the moon itself. One possible model
for the earth-moon-sun system in which the problem might be considered has
been proposed by Su-Shu Huang (1960), who called it the 'very restricted four-
body problem.' Here the earth and moon describe circular orbits relative to
one another, and their center of mass describes a circular orbit arouﬁd the sun;
all these orbits are Keplerian, lie in a plane, and }n'o perturbafions are con-
sidered. Using this model Huang studied the motion of a fourth body of an in-
finitesimal mass m a similar manner as in the restricted three~body problem.
He concludes this model gives a general idea of where the fourth body could or
could not go under given initial conditions when ’lthey are no longer very near the -
earth. Using a similar model Cronin et al. (1964) proved that under certain
conditions the fourth body has a periodic motion, relative to a rotating coordi-
nate frame, near each of the libration points of the restricted three-body prob-

lem. Their proof is based upon assumptions concerning the masses and dis-

tances of the bodies which are not satisfied by the earth-moon-sun system.



Siferd (1965) used Huang's model for the earth-moon-sun system to gener-
ate some periodic orbits. Using a numerical integration procedure, the equa-
tions of motion for the very restricted four-body problem were iterated upon
utilizing a digital ‘computer until some periodic orbits were obtained. By this

“technique eight periodic ofbits, in the numerical sense, with a respect.to a’
rotating coordinate system were found. Three periodic orbits wére around
the earth, three were around the moon, and two were around the earth—moox;
libration point (L,). No periodic orbits near the triangular points were*

 obtained.

Danby (1965) investigated the influence of the sun on motion close to the tri-
angular points of the earth-moon system. He felt the very restricted four-body
model inadequate for his invesfcigation and therefore uséd a model in which the
secular perturbations of the moon due to the sun were retained. The results
may be said to strengthen the hope that stable motion around the triangular
points of the earth-moon system. is possible. Other investigators include T;pléy,
et al. (1963 and 1965) who used a model similax: to the very restricted four-body
model exéept the\ moon's orbit is inclined with respect to the earth-sun plane.
The equations of motion for a particle near the triangular points of the earth-
moon system are numerically integrated on a digital computer for various ini-
tial conditions. One result indicates that a particle placed initja.lly at a triangu-~

lar point (L4) with zero relative velocity has an envelope of motion, centered at

L4, going through a mode of expansion to a value of one earth-moon distance for



the .major axis followed by a mode of contraction {o a value of 1/8 earth-moon

distance for the major axis. The envelope repe:i s this sequence several times

during the 2500-day period investigated. The nalure of these data suggests that

such a motion may persist for a period of time much longer than that considered '

in the study.

The present paper uses the very restricted four-body problem model as .
proposed by Huang for the earth-moon—sqn system. The merits of this model
for the earth-moon-sun system are still in doubt; however, it has been used in
this study as a first attempt to find orbits which remain near triangular points
of the earth-moon system. Using a'te_chnique proposed by Carpenter (1966), a
harmonic orbit in the numerical sense, with respect‘to the rotating coordinate
frame and about the L4 triangular point of the earth-moon system is found. In

addition, a nearly periodic orbit having half the period of the harmonic orbit is

obtained.

2. THE MODEL AND COORDINATEh SYSTEM
Consider an infinitesimal body of mass, m in a system of three bodies m;,
mj, and mz which are the sun, earth, and moon respectively. Further assume
that all four bodies remain in a plane so arranged that the center of mass, B of
mj, and mj is revc;lving around the center of mass, 0, of the entire system in a
circular orbit and my and ms themselves are revolving around B also in circular
orbits. Table I indicates the numericai values used for this model, and Figure

1 shows the geometry.
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Figurr_e 1. Geor;nefry of the ACoordinafe System at Epoch
The right angle X, Y axis system with its origin at the center of mass §f the
earth is rotating at a uniform rate so as to keep the center of mass of the moon
on the X axis. The masses m, m,;, m», and mj are in the X, Y plane. A point

L4, in the X, Y plane, is 60° from the X axis at lunar distance, a3, and in
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advance of the moon's position. This point corresponds to a triangular point of

the earth-moon system three body problem.

3. THE HARMONIC ORBIT . H
Using the model described the motion of an infinitesimal mass, m in the
vicinity of the L4 point was investigated with the purpose of obtaining a harmonic
orbit in the numerical sense. This harmonic orbit has a period equal to the )
period’ of the disturbing force, which for this model is the moon's synodic period.
Musen's (1963) method is applied with the perturbations represented in Cheby- .
shev series as proposed by Carpenter (1966). In this method the geocentric .
position vector, —r', of the mass m near the L4 triangular point is given by
= (o, +BW

where a and B are the c(/)mponents of the perturbations, -fo is the position vector

in the fixed reference ellipse, a is the semimajor axis of the reference ellipse

and

n being the mean motion in the reference ellipse and t the time. The functions

a and 8 can be represented by uniformly convergent series in the interval -1<

\ .
AN

r<1by \
a(z) = Z ay Ty ()
k=0
B =) By T, ()

=

=0



where the prime bn the summation sign is used to indicate that the first term is
to be factored by one-half. The T\ (r) are the Chebyshev polynomials defined by

Ty (T) = cos[kcos“f]

where the coefficients of these polynomials are given by a, and Bk.
The synodic period for the model being utilized is given by the equation

2 L
nz-1n;4 '

where n; and ny are the mean motions of the sun and moon respectively. The

dimensionless time t is related to time t from epoch by

2t
T =
P

where t is zero at the epoch which is defined as e first time the mass m,

crosses the positive X axis.

Starting with initia.ll’conditions at 7 =0 in the X, Y plane and near the L4 -

~ point, an orbit was generated by using the Chebyshev polynomial procedure.
Initial conditions corresponding to r of -1 and 1 were thus obtained. Using nu-

| merical partial derivatives frbm this orbit an iteration scheme was employed to
" match the initial conditions at r of -1 and 1. After several iterations this was
accomplished, and the results are shown in Table II. The a' and B' values,
shown in this tablé, are derivatives of a and 3 with respect to nt. Relative‘ geo- !
centri.c errors in position and velocity are indicated by the differences in Table

II. These differences indicate agreement in ten significant figures which corre-

spond to changes from 7 = -1 to r =1 of 0.2915 meters in the position vector,

14



TABLE II

Initial Conditions at v =-1, 0, 1 for the Harmonic Orbit

T a(r)x 103 B(r) x 103 a'(r) x 103 B'(r) x 102
-1 8.90721044 1;431234,68 .~ 7.84005032 -1.341882564
0 4.41178027 16. 95842648 14.7369698 -0.507181064
1 | 8.90721028 1.43123517 7.84005038 -1.341882534
Differences ‘
§(+1) -a(-1) =-1.6x1071° a'(+1) - a'(-1) =6.0x107"
B(+1) -B(-1) = 4.9x107'° B'(+1) - B'(-1) =3.0x107°

'd

;’, and 1.12x 10°% meters per second in the velocity vector, ? From the _‘min'1er- ,
point of view it seems adequate to call this a harmonic orbit.

Chebyshev coefficients for this orbit are given in Table III. Using the initial
conditions at epoch this ‘orbit was extended for a total of twelve synodic periods

(-1 < v £ 25). This was done as a further check to insure the accuracy of the

- orbit. For this time period agreement with the initial orbit was eight significant

figures in position and velocity. This is within the anticipated accuracy of the
calculation. I was decided to plot the harmonic orbit with respect to a rotating
coordinate system centered at L4. Referring to Figure 2, a geocentric vector,

_r; , directed towafd L4 has a magnitude, a, defined by

2
kem
3 _KXe Iy
a’ =
n2



TABLE 0I

Chebyshev Coefficients for the H:rmonic Orbit

k a, x108 By x10°8
0 9233.8688 271.0928
1 -466.7498 4715. 9669
2 4193.3102 ~2590. 7864
3 ~2839.4208 -2764. 2264
4 1530. 9949 7775.0747
5 4927.4893 ~3235. 6624
6 ~1877.9548 ~5000. 6993
7 ~1940.7497 1552. 0981
8 507.1676 1271.4117
9 356.8288 ~301.5204
10 -67.8275 -172.1400
11 -41.2120 36.8027
12 4.4834 13.0026
13 4.3726 ~3.8665
14 0.1851 -0.0154
15 -0.6623 0.4549
16 ~0. 0905 ~0.1980
17 0.1213 ~0.0468
18 0.0042 0.0448
19, -0.0196 ~0.0019
20 0.0048 ~0.0069
21 0.0024 0.0029
22 ~0.0021 0.0007
23 ~0.0001 ~0.0009
24 0.0005 0.0000
25 -0.0001 0.0002
26 -0.0001 0.0000
27 0.0000 0.0000
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Figure 2. Coordinate Systems near L4
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where a is the semimajor axis of the reference orbit, kE is the earth's gravita-

M '_;. | tional parameter and n is equal to the mean motion of the moon, n3. Thea,
W B coordinate system has its origin at T, with a directed along T, and 3 at right
angles to a in the direction of motion in the reference orbit.

A 8a, B coordinate system has its origin at (1 + a,) ?o which corresponds to

L4. The value of a, is given by the qﬁantity (a3 - a)/a where a3, the moon's _
semi-major axis, is taken to be 60 earth radii.

The 8a component is directed along?; and (3 is the same component previ-
ously defined but translated parallel to itself to the L4 point. Utilizing the data

1 = ' given in Table III the harmonic L4 orbit is plotted, see Figure 3, using the S'cz,h

, +10x1073
T=-1 DIMENSIONLESS

EPOCH,T=0
20x10°3
'DIMENSIONLESS

+-15

Figure 3. A Harmonic Ls Orbit
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B3 coordinate axes. Units for this plot are dimensionless with respect to the

semimajor axis of the reference orbit. The harmonic orbit remains close to

the Lg4 point having a deviation of less than 1.8 percent (6860km) of the earth-
moon distance. This orbit is seen to describe two different size loops about ‘L4, ’
the time in the smaller loop is 36 percent of the period. Conversion to the usual
X, ¥y cpordinate system where x and y are centered at L4 parallel to 8a, 3 but .

have dimensionless units with respect to the semimajor axis of the moon is

accomplished by the transformation

x:SGi

; as
and ;
~

a

Y—Ba—3

Since the ratio (a3/a) is near unity there would be no noticeable difference by

replacing 3a and 8 by x and y respectively in Figure 3, this matter being brought

to attention for purposes of calculation.

4. A NEARLY PERIODIC ORBIT
Since the disturbing force is nearly periodic with half the synodic period of
the moon, it is possible to find orbits which are nearly periodic with half the
moon's synodic period. One such orbit was obtained by approximately matching
initial conditions at r of -1 and zero. The initial conditions are shown in Table
IV. If the orbit were periodic with half the moon's synodic period, initial con-
ditions at t of -1 and zero would match with those at r = 1. The agreement in

12




TABLE IV

Initial Conditions at t= -1, 0, 1 for the Nearly Periodic Orbit

T a(r)x 103 B() x 103 a'(r) x 102 B'(r) x 10°
-1 6.67701926 9.31381378 1.132682180 -9.25579538
0 6.67701357 9.31377754 1.132682017 -9.25577168
1 6.65506332 9.24996973 1.128066502 -9.18511281
Differences ’

P | a(0) - a(-1) = -5.69x107° a'(0) - a'(-1) = ~1.63x107°

1& ok o 1 ‘-B(_O) -B(-1) = -3.62x 1078 B'(0) - B'(-1) = 2.37x1078

a(0) - a(+1) = 2.19x107° a'(0) - a'(+1) = 4.615x107°

B(0) -B(+1) = 6.38x107° B'(0) - B'(+1) = -7.06x 1075

. S
initial conditions between r of -1 and zero is eight significant figures in position

and velocity; however, between t of zero and one there is only five significant

~‘ figure agreement. Further reduction of this difference between t of -1 and zero
tended to increase the differences between zero and 0;13. A plot of this nearly
periodic L, orbit in the 8a, B coordinate system for r between minus one and
- one is given in Figure 4. Also shown is the envelope of the orbit for six synodic
, ; periods (-6 < v < 6). During this time interval the orbit remains within 1.2
percent (4574 km) ‘of the earth-moon distance from L4. Deviations from the t
of minus one to one orbit are seen to be less than one tenth of a percent (381km)
of the earth-moon distance. During longer time intervals the deviations ére

expected to increase.

13
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Figure 4. A Nearly Periodic Lq Orbit

Using the Chebyshev polynomial approach, motion in the vicinity of L, ca.ﬁ
be investigated for other models of the earth—moon-sun system. One of the
more interesting modeis would include the moon moving in an eccentric orbit.
With this model some insight may be gained as to the importance of the moon's
eccentricity on motion near Lg. The method is not restricted to simple models,
e.g., it is possiblg to study motion near L4 using the actual motions of the prin-

cipal bodies taken from a general theory or from an ephemeris.
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